Job Detection in Twitter
نویسنده
چکیده
In this report, we propose a new application for twitter data called job detection. We identify people’s job category based on their tweets. As a preliminary work, we limiteour task to identify only IT workers from other job holders. We have used and compared both simple bag of words model and a document representation based on Skip-gram model. Our results show that the model based on Skip-gram, achieves a 76% precision and 82% recall. 1
منابع مشابه
Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملWho Tweets? Deriving the Demographic Characteristics of Age, Occupation and Social Class from Twitter User Meta-Data
This paper specifies, designs and critically evaluates two tools for the automated identification of demographic data (age, occupation and social class) from the profile descriptions of Twitter users in the United Kingdom (UK). Meta-data data routinely collected through the Collaborative Social Media Observatory (COSMOS: http://www.cosmosproject.net/) relating to UK Twitter users is matched wit...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملJob-related discourse on social media
Working adults spend nearly one third of their daily time at their jobs. In this paper, we study job-related social media discourse from a community of users. We use both crowdsourcing and local expertise to train a classifier to detect job-related messages on Twitter. Additionally, we analyze the linguistic differences in a job-related corpus of tweets between individual users vs. commercial a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.03092 شماره
صفحات -
تاریخ انتشار 2017